Thermal management for electrical vehicles – what you need to know

Thermal management for electrical vehicles – what you need to know

As the electric vehicle market demands higher performance, longer range and faster charging, improved thermal management becomes absolutely key. The technologies to the high energy density lithium-ion (Li-ion) batteries that most commonly powered battery electric vehicles (BEVs) are evolving all the time. 

With that in mind, we’ve put together some of the most important considerations when it comes to thermal management for electric vehicle batteries.

 

Minimising the effects of thermal runaway

One of the most significant aspects of thermal management in electric vehicles is the risk of thermal runaway. Thermal runaway is a reaction that occurs when a battery cell breaks down, reaches a critical temperature and causes an unstoppable chain reaction resulting in fire and usually explosion. As electric vehicles have become more prominent in the global marketplace, the risk of thermal runaway has been a growing concern. Thermal runaway cannot be prevented, but the effects can be mitigated. The right solution is needed to slow down the reaction and buy the driver and passengers more time to safely exit the vehicle in the event it does occur. Using high- temperature insulation between the cells of the battery pack and surrounding the pack is key in this process.

 

Battery lifecycle

Constant temperature changes throughout its lifecycle have an effect on the performance and range of an electric vehicle battery. The correct thermal management is key to extending the battery lifecycle and ensuring maximum effectiveness throughout its lifespan. Batteries can generate as much as 250% more heat after 10 years of use when compared to the start of their lifecycle – as this assuming consistent driving conditions and regular charge-discharge cycles. Further study is yet to be done into variable conditions around the use of an electric vehicle and the effects on the battery over its lifetime – and continued development in thermal management will be key in combating the effects of ageing on a battery. 

 

Temperature and performance

As much as the battery “ageing process” has an effect on thermal management, the temperature can also have a direct impact on the lifecycle and performance of the battery. The service life of an electric vehicle battery begins to decreases faster at operating temperatures of 40°C or higher. Efficiency and output are much lower at temperatures below -10°C. High outside temperatures as well as momentary or temporary peaks caused by high current flow from things like recharging and boosting put the battery at risk of surpassing the critical 40°C. 

At Elmelin, we’re working closely with the automotive sector to develop and produce solutions to support better thermal management in electric vehicles and for electric vehicle batteries. If you’d like to find out more about our solutions, get in touch.